Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Prevention of Operational Errors in Semi-Automatic Riveters by Machine Vision Systems Using Deep Learning

2024-03-05
2024-01-1944
This paper reports the development of an operation support system for production equipment using image processing with deep learning. Semi-automatic riveters are used to attach small parts to skin panels, and they involve manual positioning followed by automated drilling and fastening. The operator watches a monitor showing the processing area, and two types of failure may arise because of human error. First, the operator should locate the correct position on the skin panel by looking at markers painted thereon but may mistakenly cause the equipment to drill at an incorrect position. Second, the operator should prevent the equipment from fastening if they see chips around a hole after drilling but may overlook the chips; chips remaining around a drilled hole may cause the fastener to be inserted into the hole and fastened at an angle, which can result in the whole panel having to be scrapped.
Technical Paper

Development of Fe-SiC Complex Part of Ball Screw Assembly by Direct Metal Laser Sintering

2024-03-05
2024-01-1941
Additive manufacturing (AM) is currently the most sought-after production process for any complex shaped geometries commonly encountered in Aerospace Industries. Although, several technologies of AM do exits, the most popular one is the Direct Metal Laser Sintering (DMLS) owing to its high versatility in terms of precision of geometries of components and guarantee of highest levels of reduction in production time. Further, metallic component of any complex shape such as Gas Turbine Blades can also be developed by this technique. In the light of the above, the present work focuses on development of iron silicon carbide (Fe-SiC) complex part for ball screw assembly using DMLS technique. The optimized process parameters, hardness and wear resistance of the developed iron-SiC composite will be reported. Further, since the material chosen is a metallic composite one, the effect of SiC on the thermal stresses generated during the DMLS processing of Fe-SiC composite will also be discussed.
Technical Paper

Path Following Performance Analysis for Siemens 840 D sl Controlled Robotic Machining Platforms with Secondary Encoders

2024-03-05
2024-01-1937
Robotic arms are widely known to fall short in achieving the tolerances required when it comes to the metal machining industry, especially for the aerospace sector. Broadly speaking, two of the main reasons for that are a lack of stiffness and a lack of accuracy. Robotic arm manufacturers have responded to the lack of stiffness challenge by producing bigger robots, capable of holding high payloads (e.g., Fanuc M-2000iA/2300) or symmetric robots (e.g., ABB IRB6660). Previous research proved that depending on the application and the material being machined, lack of stiffness will still be an issue, even for structurally bigger robotic arms, due to their serial nature. The accuracy issue has been addressed to a certain extent by using secondary encoders on the robotic arm joints. The encoder enhanced robotic arm solutions tend to be expensive and prior knowledge proves that there are still limitations when it comes to achieved accuracy.
Technical Paper

AZ31-MWCNT Composites Fabricated Through Powder Metallurgy for Aerospace Applications

2024-03-05
2024-01-1938
The aerospace industry's unceasing quest for lightweight materials with exceptional mechanical properties has led to groundbreaking advancements in material technology. Historically, aluminum alloys and their composites have held the throne in aerospace applications owing to their remarkable strength-to-weight ratio. However, recent developments have catapulted magnesium and its alloys into the spotlight. Magnesium possesses two-thirds of aluminum's density, making it a tantalizing option for applications with regard to weight-sensitive aerospace components. To further enhance magnesium's mechanical properties, researchers have delved into the realm of metal matrix composites (MMCs), using reinforcements such as Alumina, Silicon carbide, Boron carbide and Titanium carbide.
Technical Paper

Computational Modelling of Hypersonic Nozzles: The Influence of Enthalpy on the Flow Thermochemistry

2024-03-05
2024-01-1935
In this work, an investigation of the enthalpy effects on the thermochemical non-equilibrium in hypersonic nozzles is performed. Three different nozzles, with different geometries and stagnation enthalpy conditions are used in this study. The three cases, two of them with stagnation enthalpy conditions of 3.3 MJ/kg and 7.56 MJ/kg, use molecular nitrogen as the testing fluid and in the third case, corresponding to the higher enthalpy condition of 23.8 MJ/kg, the fluid is partially dissociated air composed by five neutral species (N2, O2, NO, N and O). A reliable numerical model, previously validated by the authors, using non-equilibrium Navier-Stokes-Fourier equations within a density-based algorithm is here employed in the OpenFOAM framework. After an estimation of the discretization uncertainties by using the Richardson extrapolation method and Roache’s Grid Convergence Index, the results are obtained by using a sufficient independent grid for each case.
Technical Paper

Telescope Baffle Mass Simulator Design Using Shape Optimization

2024-03-05
2024-01-1934
A case study of an application of Shape optimization techniques in the design of a mass simulator has been presented. A simple mass Simulator is to be designed as a replacement for a Telescope Baffle Mass for testing purposes. The simulator is made of simple plate structures like flat plates and cylindrical plates joined together. The overall mass, location of center of gravity and first few modes of the simulator need to be close to the Telescope Baffle, it is replacing. This ensures that the Simulator is a good replacement for the Telescope Baffle both in statics and dynamics performance. Shape Optimization techniques using approximate direct linearization method of MSC/Nastran software have been used to fine-tune the baseline Simulator design to achieve target properties of mass, cg, frequencies, etc.
Technical Paper

Evaluation of Coated and Uncoated Inserts of the Cutting Tool for Improved Machinability of Inconel 825 Alloy

2024-02-23
2024-01-5026
The limitations of commonly used materials such as steel in withstanding high temperatures led to exploring alternative alloys. For instance, Inconel 825 is a nickel-based alloy known for its exceptional corrosion resistance. Thus, the Inconel 825 is used in various applications, including aerospace, marine propulsion, and missiles. Though it has many advantages, machining this alloy at high temperatures could be challenging due to its inadequate heat conductivity, increased strain hardening propensity, and extreme dynamic shear strength. The resultant hardened chips generated during high-speed machining exhibit elevated temperatures, leading to tool wear and surface damage, extending into the subsurface. This work investigated the influence of varying process settings on the machinability of Inconel 825 metal, using both uncoated and coated tools.
Technical Paper

Design and Testing of Unmanned Aerial Vehicle with Morphing Control Surface

2024-02-23
2023-01-5143
The prospective generation of Unmanned Aerial Vehicles (UAVs) can attempt to eliminate conventional primary control surfaces, thereby seeking to enhance operational efficiency. This endeavor constitutes an experimental manifestation of morphing principles utilizing Shape Memory Alloy (SMA), specifically Nitinol, to actuate control surfaces through a meticulously orchestrated application of power cycles at diverse frequencies. The integration of Morphing Technology has garnered heightened attention within the aviation industry, owing to its capacity to augment efficiency and performance across a spectrum of flight conditions. The intrinsic appeal of morphing lies in its potential to dynamically alter wing geometry during flight, thereby optimizing fuel efficiency and mitigating environmental impact through diminished carbon emissions resulting from reduced drag. This, in turn, necessitates reduced thrust to achieve similar or same performance levels.
Technical Paper

Experimental Investigation on the Mechanical Properties of Date Seed and Neem Gum Powder Added Natural Composites

2024-02-23
2023-01-5150
The experimental investigation aims to improve natural composite materials aligned with feasible development principles. These composites can be exploited across several industries, including the automobile and biomedical sectors. This research employs date seed powder and neem gum powder as reinforcing agents, along with polyester resin as the base material. The fabrication route comprises compression moulding, causing the production of the natural composite material. This study focuses extensively on mechanical characteristics such as tensile strength, flexural strength, hardness, and impact resistance to undergo comprehensive testing. Furthermore, the chemical properties of the composites are examined using the FTIR test to gain understanding by integrating different proportions of date seed powder (5%, 10%, 15%, and 20%) and neem gum powder (0%, 3%, 6%, and 9%) in the matrix phase.
Technical Paper

Numerical Analysis of Different Injectors for Kerosene/Hydrogen-Peroxide and Ethanol Amine/Hydrogen-Peroxide for Satellite Thruster

2024-02-23
2023-01-5180
In a satellite thruster the function of injector plays a major role in controlling the combustion. This paper presents the numerical simulation of two most used injectors namely, impinging doublet, and triplet using Ansys fluent. The injectors are designed for the non-toxic, green propellants used in satellite thrusters. The present study focuses on the design and simulation of the injectors with 2 variant of green propellants i.e., Kerosene/Hydrogen-peroxide and Ethanol Amine/Hydrogen-peroxide. The objective of the study is to investigate the performance of the two injectors in terms of atomization, combustion efficiency and thrust generation. Theoretical design calculations were performed for a 20 N bi-propellant satellite thruster. A comparative study on the condensed combustion products and injector was carried out using NASA CEA Run code and Ansys fluent, respectively. The ethanol amine/hydrogen-peroxide injector showed better performance in terms of combustion efficiency.
Technical Paper

Investigation on Mechanical Properties of ER70S-6 Copper-Coated Steel Wire Sample Produced by Wire Arc Additive Manufacturing (WAAM)

2024-02-23
2023-01-5105
Wire arc additive manufacturing technology has become a promising alternative technology to high-volume metal deposition in many manufacturing industries like aerospace and automotive due to arc stability, long process cycle time, and formability. In this work, the Fanuc arc mate robot forms a single-pass, single-layer structure with a 1.2 mm diameter wire of copper-coated steel. Pure Argon gas is used as a shielding gas to protect the weld from oxidation. Different welding speed is carried out to analyze the bead thickness and height. Current and voltage as a heat input with optimal welding speed, a 10 kg straight wall is built with an operative building rate of 3.94 kg/h. The Rockwell hardness test is used to determine the hardness of the material, and it is discovered that it is 80 HRB. The tensile test is performed to determine the tensile strength and yield strength of the component; the measured values are 483.88 N/mm2 and 342.156 N/mm2, respectively.
Technical Paper

Multiuso Faltbar Wagen: A Multipurpose Foldable Trolley Designed for Efficiency and Ergonomics

2024-02-23
2023-01-5118
Efficient transportation for carrying heavy loads is a common challenge across various applications, from supermarkets to industrial purposes. Conventional trolleys often fall short when loaded with heavy cargo, resulting in increased exertion and diminished productivity. Moreover, these challenges can adversely affect posture and lumbar spine health, especially for elder people and persons with cervical problems. There is a need for more user-friendly, ergonomic, and space-efficient solutions. This project addresses these challenges through an innovative design that encompasses various aspects of trolley functionality, including the study of comfort, wheel selection, and material considerations, drawing from ergonomic research. Multiple methods are employed to optimize the trolley’s dimensions to improve its overall performance. The trolley’s design features a collapsible basket for the transport of smaller-sized items and a base frame for larger goods and luggage.
Technical Paper

Evaluation of Tribological Behaviour of Stir Casted Aluminium Alloy Hybrid Composites

2024-02-23
2023-01-5171
Employing the stir casting process, a unique hybrid composites were fabricated, using A356 as the matrix and reinforced with ZrSiO4 and TiB2 particulates. The produced specimens were initially in their as-cast state. Following that, the reinforcement particle concentrations were changed 2 and 4 weight percentages (wt%) of ZrSiO4 and keeping a constant 6 wt% of TiB2. Three samples were exposed to dry sliding conditions at room temperature using a tribometer. Two applied loads of magnitude 10N and 50N and a sliding velocity of 1m/s and 2m/s were selected as testing parameters. After measuring the wear rate (WR) and the coefficient of friction (COF), the worn-out pin surfaces were examined using scanning electron microscopy (SEM).
Technical Paper

Effect of Post Weld Heat Treatment on Notch Sensitivity Ratio of Electron Beam Welded AA2024 Aluminum Alloy Joints

2024-02-23
2023-01-5142
Aluminum alloy AA2024 stands out as a widely utilized age-hardening alloy in aircraft applications worldwide. Despite its superior weldability in comparison to its 6000-series counterparts, AA2024 still reveals vulnerability in the welded joint. Specifically, in the T6 condition, the joint strength is only about 40% of the strength exhibited by the base metal. Faced with this challenge, design engineers often resort to selecting thicker base metal plates due to notable disparities in strength values, particularly concerning yield strength. AA2024 alloy is welded using low heat input electron beam welding. This weld is eliminated all demerits in other fusion welding process. However, heat affected zone is always a weaker region in all the fusion welding process. Post weld heat treatment process, namely, solution treatment and artificial ageing was performed to dimmish the width of weaker region.
Technical Paper

Enhancing Tribological Effectiveness of Polypropylene with Carbon Fiber Composites via Fused deposition modeling Technology by Varying Infill Speeds

2024-02-23
2023-01-5127
Additive manufacturing (AM) is a common way to make things faster in manufacturing era today. A mix of polypropylene (PP) and carbon fiber (CF) blended filament is strong and bonded well. Fused deposition modeling (FDM) is a common way to make things. For this research, made the test samples using a mix of PP and CF filament through FDM printer by varying infill speed of 40 meters per sec 50 meters per sec and 60 meters per sec in sequence. The tested these samples on a tribometer testing machine that slides them against a surface with different forces (from 5 to 20 N) and speeds (from 1 to 4 meters per sec). The findings of the study revealed a consistent linear increase in both wear rate and coefficient of friction across every sample analyzed. Nevertheless, noteworthy variations emerged when evaluating the samples subjected to the 40m/s infill speed test.
Technical Paper

Application of Desirability Approach to Determine Optimal Turning Parameters

2024-02-20
2024-01-5022
Aluminum alloys are employed in agricultural equipment, aerospace sectors, medical instruments, machinery, automobiles, etc. due to their physical and mechanical characteristics. The geometrical shape and size of the parts are modified in turning operation by using a single-point cutting tool. A356 aluminum alloy is widely used in various engineering sectors, hence there is a necessity to produce A-356 components with quality. The inappropriate cutting parameters used in turning operation entail high production costs and reduce tool life. Box–Behnken design (BBD) based on response surface methodology (RSM) was used to design the experiments such that the experiment trials were conducted by varying cutting parameters like N-spindle speed (rpm), f-feed rate (mm/rev), and d-depth of cut (mm). The multi-objective responses, such as surface roughness (SR) and metal removal rate (MRR) were analyzed with the desirability method.
Technical Paper

Surface Modification Effect of Magnesium Alloy by Friction Stir Processing

2024-02-07
2024-01-5017
This article explores the impact of friction stir processing (FSP) on the surface modification of magnesium alloy AZ91D. The purpose is to enhance the alloy’s surface qualities and, consequently, improve its performance in various applications. Using FSP, the microstructure and mechanical characteristics of the magnesium alloy are improved through solid-state joining. The study assesses the impact of FSP parameters on the alloy’s surface properties. Researchers adjust parameters such as tool rotation speed and traverse speed to achieve accurate FSP conditions for the intended surface alterations. The surface characteristics of FSP-treated magnesium alloy AZ91D are evaluated through detailed analyses, including microstructure, surface roughness, hardness, and wear resistance. The study considers the effect of FSP on grain development and microhardness, which reflect the immediate impact on surface properties.
Technical Paper

An Integrated Approach Using Multi-Body Dynamics Simulation & Driving Simulator towards Chassis Development for an SUV Vehicle

2024-01-16
2024-26-0050
Driving dynamics performance is one of the key customer attributes to be developed during product development. In the vehicle development process, freezing the hardware of the chassis aggregates is one of the major priorities to kick off the other vehicle development activities. The current work involves the development of a multilink suspension for an SUV class vehicle. Typically, each OEM performs several product development loops for maturing the vehicle design. The driving dynamics performance evaluation and tuning happens on a physical vehicle with the driver in Loop. Tuning of suspension parameter on the physical vehicle entails actual replacement of parts/components. This encompasses multiple tuning cycles in product development associated with increased cost and test time. To reduce the product development time and cost while delivering first time right chassis configuration, we took an approach of getting driver-in-loop through driving simulator in the concept phase.
Technical Paper

Research on the Forming Process of Bimetal Composite Pipe by Hydroforming

2024-01-15
2024-01-5001
Bimetal composite pipe has higher strength and is more corrosion and high temperature resistant compared to single metal pipe, making it a new type of pipe that is being gradually applied to important industrial fields such as aviation and aerospace manufacturing. To study the hydraulic forming mechanism of bimetal composite pipes, the forming process is divided into three stages: liner pipe elastic–plastic deformation, base pipe loading, and unloading. The stress and strain relation between the liner and base pipe during the gradual increase in hydraulic pressure is analyzed, and the range of selected internal pressure required for composite pipe formation and the relation between residual contact pressure and internal pressure for the liner–base pipe interface are obtained.
Technical Paper

6 degrees of freedom simulation of an unguided sounding rocket using Matlab/Simulink

2024-01-08
2023-36-0095
Unguided sounding rockets, also known as sub-orbital rockets, are vehicles that carry scientific experiments and/or sensors to collect data during their trajectory. These rockets lack active control but are capable of traversing the Earth’s atmosphere. It is crucial to thoroughly analyze the flight parameters during the preliminary design phase. The Open Rocket flight simulation software, developed by Sampo Niskanen, is a widely used open-source project. However, it has some simplifications in comparison to its documentation. It does not specify the calculations of critical parameters required for the rocket’s stability during its flight. Additionally, it does not calculate data related to dynamic stability, which encompasses the system’s ability to make disturbances corrections during the rocket’s trajectory. Consequently, this study presents a flight simulation of a rocket with 6 degrees of freedom using Matlab/Simulink.
X